Estimating transmission from genetic and epidemiological data: a metric to compare transmission trees
نویسندگان
چکیده
Reconstructing who infected whom is a central challenge in analysing epidemiological data. Recently, advances in sequencing technology have led to increasing interest in Bayesian approaches to inferring who infected whom using genetic data from pathogens. The logic behind such approaches is that isolates that are nearly genetically identical are more likely to have been recently transmitted than those that are very different. A number of methods have been developed to perform this inference. However, testing their convergence, examining posterior sets of transmission trees and comparing methods’ performance are challenged by the fact that the object of inference – the transmission tree – is a complicated discrete structure. We introduce a metric on transmission trees to quantify distances between them. The metric can accommodate trees with unsampled individuals, and highlights differences in the source case and in the number of infections per infector. We illustrate its performance on simple simulated scenarios and on posterior transmission trees from a TB outbreak. We find that the metric reveals where the posterior is sensitive to the priors, and where collections of trees are composed of distinct clusters. We use the metric to define median trees summarising these clusters. Quantitative tools to compare transmission trees to each other will be required for assessing MCMC convergence, exploring posterior trees and benchmarking diverse methods as this field continues to mature.
منابع مشابه
Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus.
Estimating detailed transmission trees that reflect the relationships between infected individuals or populations during a disease outbreak often provides valuable insights into both the nature of disease transmission and the overall dynamics of the underlying epidemiological process. These trees may be based on epidemiological data that relate to the timing of infection and infectiousness, or ...
متن کاملUnravelling transmission trees of infectious diseases by combining genetic and epidemiological data.
Knowledge on the transmission tree of an epidemic can provide valuable insights into disease dynamics. The transmission tree can be reconstructed by analysing either detailed epidemiological data (e.g. contact tracing) or, if sufficient genetic diversity accumulates over the course of the epidemic, genetic data of the pathogen. We present a likelihood-based framework to integrate these two data...
متن کاملRelating phylogenetic trees to transmission trees of infectious disease outbreaks.
Transmission events are the fundamental building blocks of the dynamics of any infectious disease. Much about the epidemiology of a disease can be learned when these individual transmission events are known or can be estimated. Such estimations are difficult and generally feasible only when detailed epidemiological data are available. The genealogy estimated from genetic sequences of sampled pa...
متن کاملAn Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model
In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...
متن کاملWhen are pathogen genome sequences informative of transmission events?
Recent years have seen the development of numerous methodologies for reconstructing transmission trees in infectious disease outbreaks from densely sampled whole genome sequence data. However, a fundamental and as of yet poorly addressed limitation of such approaches is the requirement for genetic diversity to arise on epidemiological timescales. Specifically, the position of infected individua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016